Acknowledgments

We wish to acknowledge the support provided by the National Polytechnic Institute

(Instituto Politécnico Nacional) and the Secretariat for Research and Postgraduate Studies

(Secretaría de Investigación y Posgrado), grant numbers 20220729 and 20220275.

References

1. J. Rivnay, R.M. Owens, G.G. Malliaras (2014) The rise of organic bioelectronics. Chem. Mater.

26 (1): 679–685.

2. D. Pankratov, E. González-Arribas, Z. Blum, S. Shleev (2016) Tear based bioelectronics.

Electroanal. 28 (6): 1250–1266.

3. G.G. Malliaras (2013) Organic bioelectronics: A new era for organic electronics. Biochim.

Biophys. Acta. 1830 (9): 4286–4287.

4. F. Vitale, B. Litt (2018) Bioelectronics: The promise of leveraging the body’s circuitry to treat

disease. Bioelectronics in Medicine. 1 (1): 3–7.

5. I. Willner, B. Willner (2001) Biomaterials integrated with electronic elements: en route to

bioelectronics. Trends Biotechnol. 19 (6): 222–230.

6. M. Jia, S. Ray, R. Breault, M. Rolandi (2020) Control of pH in bioelectronics and applications.

APL Materials. 8, 120704: 1–8.

7. T. Someya, Z. Bao, G.G. Malliaras (2016) The rise of plastic bioelectronics. Nature. 540:

379–385.

8. S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee, C. Pang (2019) Bioinspired adhesive archi­

tectures: From skin patch to integrated bioelectronics. Adv. Mater. 31 (34), 1803309: 1–18.

9. C. Xie, X. Wang, H. He, Y. Ding, X. Lu (2020) Mussel-inspired hydrogels for self-adhesive

bioelectronics. Adv. Funct. Mater. 30 (25), 1909954: 1–30.

10. X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang, R.Y.Z. Stening, X. Sheng, L. Yin (2020)

Materials strategies and device architectures of emerging power supply devices for im­

plantable bioelectronics. Small. 16 (15), 1902827: 1–21.

11. A. Ma, A. Poon (2015) Midfield wireless power transfer for bioelectronics. IEEE Circ. Syst.

Mag. 15 (2): 54–60.

12. P. Chen, X. Sun, H. Peng (2020) Emerging soft bioelectronics. Adv. Funct. Mater. 30 (29),

2001827: 1–2.

13. D. Gao, K. Parida, P.S. Lee (2020) Emerging soft conductors for bioelectronic interfaces. Adv.

Funct. Mater. 30 (29), 1907184 1–30.

14. D.T. Simon, E.O. Gabrielsson, K. Tybrandt, M. Berggren (2016) Organic bioelectronics:

Bridging the signaling gap between biology and technology. Chem. Rev. 116 (21): 13009–13041.

15. D. Ohayon, S. Inal (2020) Organic bioelectronics: From functional materials to next-

generation devices and power sources. Adv. Mater. 32 (36, 2001439): 1–29.

16. J. Tropp, J. Rivnay (2021) Design of biodegradable and biocompatible conjugated polymers

for bioelectronics. J. Mater. Chem. C. 9 (39): 13543–13556.

17. C. Schmidt (2012) Bioelectronics: The bionic material. Nature 483: S37.

18. S.K. Rastogi, A. Kalmykov, N. Johnson, T. Cohen-Karni (2018) Bioelectronics with nano­

carbons. J. Mater. Chem. B, 6: 7159–7178.

19. G. Tarabella, F.M. Mohammadi, N. Coppedè, F. Barbero, S. Iannotta, C. Santato, F. Cicoira

(2013) New opportunities for organic electronics and bioelectronics: Ions in action. Chem. Sci.

4: 1395–1409.

120

Bioelectronics